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We consider the problem of designing (perhaps massively) distributed collections
of adaptive agents so as to optimize a world utility function dependent the behav-
ior of the entire collection. We consider this problem when each agent’s individual
behavior is cast as striving to maximize an associated payoff utility function. The
central issue in such design problems is how to initialize/update the payoff utility
function so as to induce best possible world utility. Traditional “team game” ap-
proaches simply assign to each agent the world utility as its payoff utility function.
In previous work we used the “Collective Intelligence” framework to derive a better
choice of payoff utility functions, one that results in world utility performance up
to orders of magnitude superior to that ensuing from use of the team game utility.
In this paper we extend these results using a novel mathematical framework. We
review the derivation under that framework of the general class of payoff utility
functions that both are easy for the individual agents to learn and that, if learned
well, result in high world utility. We then demonstrate experimentally that using
these new utility functions can result in significantly improved performance over
that of previously investigated collective intelligence payoff utilities, over and above
those previous utilities’ superiority to the conventional team game utility.

1 Introduction

In this paper we are interested in Multi-Agent Systems (MAS’s) 1:2:%% where

there is a provided world utility function that rates the possible histories of
the full system. At the same time, each agent runs a reinforcement learning
(RL) algorithm 67, to try to maximize its associated private utility function.

In such a system, we are confronted with an inverse problem: How should
we initialize/update the agents’ private utility functions to ensure that as the
system unfolds the agents do not “work at cross-purposes”, and their collective
behavior maximizes the provided world utility function. Intuitively, to solve
this inverse problem requires private utility functions that the agents can each
learn well, but that also are “aligned” with the world utility. In particular,
such alignment is necessary to avoid economics phenomena like the Tragedy of
The Commons (TOC)?® or Braess’ paradox®.

This problem is related to work in many other fields, including computa-
tional economics !°, mechanism design !, reinforcement learning”, statistical
mechanics 12, computational ecologies '*, (partially observable) Markov deci-
sion processes '* and game theory !'. However none of these fields is both
applicable in large, real-world problems, and also directly addresses the gen-
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eral inverse problem rather than a very special instance of it. (In particular,
the field of mechanism design is not generally applicable. A detailed discussion
of related fields, involving hundreds of references is available!%.)

It’s worth emphasizing that some of the previous work that does con-
sider the general inverse problem does so by employing MAS’s in which each
agent uses RL %7, However, in those cases, each agent generally receives the
world utility function as its private utility function (i.e., implements a “team
game” 18). The shortcoming of such approaches, as expounded below and in
previous work, is that they scale very poorly to large problems. (Intuitively,
the difficulty is that each agent can have a hard time discerning the echo of its
behavior on the world utility when the system is large.)

In previous work we modified these systems by using the CQOllective INtel-
ligence (COIN) framework to to derive the alternative “Wonderful Life Utility”
(WLU) 15, a private utility that generically avoids the pitfalls of the team game
private utility 191520 For example, in some of that work we used the WLU
as the private utility for distributed control of network packet routing!®. Con-
ventional approaches to packet routing have each router run a shortest path
algorithm (SPA), i.e., each router routes its packets in the way that it ex-
pects will get those packets to their destinations most quickly. Unlike with a
COIN, with SPA-based routing the routers have no concern for the possible
deleterious side-effects of their routing decisions on the global goal (e.g., they
have no concern for whether they induce bottlenecks). We ran simulations
that demonstrated that a COIN-based routing system has substantially better
throughputs than does the best possible SPA-based system '°, even though
that SPA-based system has information denied the COIN system. In related
work we have shown that use of the WLU automatically avoids the infamous
Braess’ paradox, in which adding new links can actually decrease throughput
— a situation that readily ensnares SPA’s.

As another example, we considered the pared-down problem domain of a
congestion game?! | in particular a more challenging variant of Arthur’s El Farol
bar attendance problem 22, sometimes also known as the “minority game” 12.
In this problem, agents have to determine which night in the week to attend
a bar. The problem is set up so that if either too few people attend (boring
evening) or too many people attend (crowded evening), the total enjoyment of
the attendees drops. Our goal is to design the reward functions of the attendees
so that the total enjoyment across all nights is maximized. In this previous
work we showed that use of the WLU can result in performance orders of
magnitude superior to that of team game utilities.

In this article we extend this previous work, by investigating the impact of
the choice of the single free parameter in the WLU (the “clamping parameter”),
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which we simply set to 0 in our previous work. In particular, we employ some
of the mathematics of COINs to determine the theoretically optimal value of
the clamping parameter, and then present experimental tests to validate that
choice of clamping parameter. In the next section we review the relevant con-
cepts of COIN theory. Then we sketch how to use those concepts to derive
the optimal clamping parameter. To facilitate comparison with previous work,
we chose to conduct our experimental investigations of the performance with
this optimal clamping parameter in variations of the Bar Problem. We present
those variations in Section 3. Finally we present the results of the experiments
in Section 4. Those results corroborate the predicted improvement in perfor-
mance when using our theoretically derived clamping parameter. This extends
the superiority of the COIN-based approach above conventional team-game
approaches even further than had been done previously.

2 Theory of COINs

In this section we summarize that part of the mathematics of COINs that is
relevant to the study in this article. We consider the state of the system across
a set of consecutive time steps, t € {0,1,...}. Without loss of generality, all
relevant characteristics of agent 1 at time ¢ — including its internal parameters
at that time as well as its externally visible actions — are encapsulated by a
Euclidean vector ¢, ¢, the state of agent n at time ¢. {; is the set of the states
of all agents at t, and ( is the system’s worldline, i.e., the state of all agents
across all time.

World utility is G(¢), and when 7 is an RL algorithm “striving to in-
crease” its private utility, we write that utility as v,(¢). (The mathematics
can readily be generalized beyond such RL-based agents 5. Here we restrict
attention to utilities of the form ), Ry({) for reward functions R;.
Definition 1: A system is factored if for each agent n individually,

n(C) > %(C') & G >G(1(),

for all pairs ¢ and (¢ that differ only for node 7.

For a factored system, when every agents’ private utility is optimized (given
the other agents’ behavior), world utility is at a critical point (e.g., a local
maximum) '®. In game-theoretic terms, optimal global behavior occurs when
the agents’ are at a private utility Nash equilibrium . Accordingly, there can
be no TOC for a factored system 5-19:20) Tn addition, off of equilibrium, the
private utilities in factored systems are “aligned” with the world utility.
Definition 2: The (¢t = 0) effect set of node n at ¢, S&//((), is the set of

all components (, y for which the gradients V¢, ,(()y ¢ # 0. S&/7 with no
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specification of ¢ is defined as UgSf,f F(¢). We will also find it useful to define
"SefT as the set of all components that are not in Sg/7. Intuitively, the ¢ = 0
effect set of 7 is the set of all node-time pairs which, under the deterministic
dynamics of the system, are affected by changes to n’s t = 0 state.

Definition 3: Let o be a set of agent-time pairs. CL,(¢) is ¢ modified by
“clamping” the states corresponding to the elements of ¢ to some arbitrary
pre-fixed vector K. Then the (effect set) Wonderful Life Utility for node 5
(at time 0) is WLU,(¢) = G(¢) — G(CLST?H (¢)), where conventionally & = 0.

Note the crucial fact that to evaluate the WLU one does not need to
know how to calculate the system’s behavior under counter-factual starting
conditions. All that is needed to evaluate W LU, is the function G(.), the
actual ¢, and Sf,f ¥ (which can often be well-approximated even with little
knowledge about the system).

In previous work, we showed that effect set WLU is factored?°. As another
example, if v, = G Vn (a team game), then the system is factored. However
for large systems where G sensitively depends on all components of the system,
each agent may experience difficulty discerning the effects of its actions on G.
As a consequence, each  may have difficulty achieving high v, in a team game.
We can quantify this signal/noise effect by comparing the ramifications on
v (¢) arising from changes to ;0 with the ramifications arising from changes
to (4,0, where 7 represents all nodes other than 1. We call this quantification
learnability '. A linear approximation to the learnability in the vicinity of
¢ is the differential learnability ), ,, ({):
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It can be proven that in many circumstances, especially in large problems,
WLU has much higher differential learnability than does the team game choice
of private utilities 15. (Intuitively, this is due to the subtraction occurring in
the WLU’s removing a lot of the noise.) The result is that convergence to
optimal G with WLU is much quicker (up to orders of magnitude so) than
with a team game.

However the equivalence class of utilities that are factored for a particular
G is not restricted to the associated team game utility and clamp-to-0 WLU.
Indeed, one can consider solving for the utility in that equivalence class that
maximizes differential learnability. An approximation to this calculation is to
solve for the factored utility that minimizes the expected value of [\, wrr,] 2,
where the expectation is over the values ( o.

A number of approximations have to be made to carry out this calcula-
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tion'®. The final result is that n should clamp to its empirical expected average
action, where that average is over the elements in its training set ?3. Here, for
simplicity, we do not actually make sure to clamp each 7 separately to its own
average action, a process that involves n modifying what it clamps to in an
online manner. Rather we clamp all agents to the same average action. We
then made the guess that the typical probability distribution over actions is
uniform. (Intuitively, we would expect such a choice to be more accurate at
early times than at later times in which agents have “specialized”.)

3 The Bar Problem

We focus on the following six more general variants of the bar problem inves-
tigated in our earlier work 2°: There are N agents, each picking one out of
seven actions every week. Each action corresponds to attending the bar on
some particular set of [ out of the seven nights of the current week, where
1e€{1,2,3,4,5,6}.* At the end of the week the agents get their rewards and
the process is repeated. For simplicity we chose the attendance profiles of each
potential action so that when the actions are selected uniformly the resultant
attendance profile across all seven nights is also uniform.

World utility is G(¢) = ¥, Ro((y), where Ro(Cy) = Shy ¢(ak((, 1)),
z (¢, 1) is the total attendance on night k at week ¢, ¢(y) = yexp (—y/c), and
¢ is a real-valued parameter. (To keep the “congestion” level constant, for [
going from 1 to 6, ¢ = {3,6,8,10,12,15}, respectively.) Our choice of ¢(.)
means that when either too few or too many agents attend some night in some
week world reward Rg is low.

Since we are concentrating on the utilities rather than on the RL algo-
rithms that use them, we use (very) simple RL algorithms. Each agent n has a
7-dimensional vector giving its estimates of the reward it would receive for tak-
ing each possible action. At the beginning of each week, each 7 picks the night
to attend randomly, using a Boltzmann distribution over the seven components
of 1’s estimated rewards vector. For simplicity, the temperature parameter of
the Boltzmann distribution does not decay in time. However to reflect the fact
that each agent operates in a non-stationary environment, reward estimates
are formed using exponentially aged data: in any week ¢, the estimate 1 makes
for the reward for attending night ¢ is a weighted average of all the rewards it
has previously received when it attended that night, with the weights given by

%In order to keep the learning difficulties faced by the agents similar for various choices of I,
the agents always have seven action from which to choose. Each such action gets mapped to
an “attendance” profile, e.g.., for | = 2, so that each agent must choose two nights, action
one maps to attending on days one and two, action two maps to attending on days two and
three etc.



an exponential function of how long ago each such reward was. To form the
agents’ initial training set, we had an initial period in which all actions by all
agents were chosen uniformly randomly, before the learning algorithms were
used to choose the actions.

4 Experimental Results

We investigate three choices of & 0, T = (1,1,1,1,1,1,1), and the “average”
action, @ = %, where | € {1,2,3,4,5,6} depending on the problem. The
associated WLU’s are distinguished with a superscript. In the experiments
reported here all agents have the same reward function, so from now on we
drop the agent subscript from the private utilities. Writing them out, the three
WLU reward functions are:

Ry 15(Ce) = Ra(Ce) — Ra(CLY(C4))
= ¢a,(24,((,t)) — da,(za,((,t) — 1)
Ry pi(Ce) = Ra(Ce) — Ra(CLI(C,))

7
= 2 #a(@a(G,t) = dal@a(Ct) +1)

d#dy
Ry1a(Ce) = Ra(Ce) — Ra(CLE(Cy))

7
= da®a((,t) — dalza((,t) + aq)

d£dy

+ ¢a,(zq,((, 1)) — ¢q,(24,(C,t) — 14 aq)

where dj, is the night picked by n and aq = /7 The team game reward func-
tion is simply Rg. Note that to evaluate Ry, ;5 each agent only needs to know
the total attendance on the night it attended. In contrast, Rg and Ry a
require centralized communication concerning all 7 nights, and Ry, r requires
communication concerning 6 nights. Finally, note that when viewed in at-
tendance space rather than action space, CL? is clamping to the attendance
vector ¥; = 2221 224, where ug,; is the i’th component (0 or 1) of the the d’th
action vector. So for example, for [ = 1, CL? clamps to ¥; = Z;Zl %, where
d4,; is the Kronecker delta function.

In the first experiment each agent had to select one night to attend the bar
(I = 1). In this case, & = 0 is equivalent to the agent “staying at home,” while
,—{ — 1

T corresponds to the agent attending every night. Finally, K = d = 7 is
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Figure 1: Reward function comparison when agents attend one night. (W Lz is < ; WLjis
+; WLy isO; G is x)

equivalent to the agents attending partially on all nights in proportions equiv-
alent to the overall attendance profile of all agents across the initial training
period. (Note, none of these “actions” are actually available to the agents.
They simply use these fictional actions to compute their utilities, as described
in Section 2.)

Figure 1 graphs world reward against time, averaged over 100 runs, for 60
agents and ¢ = 3. (Throughout this paper, error bars are too small to depict.)
The two straight lines correspond to the optimal performance, and the “base-
line” performance given by uniform occupancies across all nights. Systems
using WLz and W L rapidly converged to optimal and to quite good perfor-
mance, respectively. This indicates that for the bar problem the “mild assump-
tions” mentioned above hold, and that the approximations in the derivation of
the optimal clamping parameter are valid.

Figure 2 shows how ¢t = 500 performance scales with N for each of the
reward signals. For comparison purposes the performance is normalized — for
each utility U we plot %, where Ry, and Rp,s. are the optimal per-
formance and a canonical baseline performance given by uniform attendance
across all nights, respectively. Systems using Rg perform adequately when N
is low. As N increases however, it becomes increasingly difficult for the agents
to extract the information they need from Rg. Because of their superior learn-
ability, systems using the WL rewards overcome this signal-to-noise problem
to a great extent. Because the WL rewards are based on the difference between
the actual state and the state where one agent is clamped, they are much less
affected by the total number of agents. However, the action vector to which
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Figure 2: Scaling properties of the different reward function. (WLg is & ; WL is + ; WLz
isO; Gis X)

agents are clamped also affects the scaling properties.

Figure 3 shows the normalized world reward obtained for the different pri-
vate utilities as a function of ! (i.e., when agents attend the bar on multiple
nights in one week). Ry, o performs well for all problems. Ry, r on the other
hand performs poorly when agents only attend on a few nights, but reaches the
performance of Ry, 2 when agents need to select six nights, a situation where

the two clamping vectors are very similar (f and %, respectively). Ry, ;5 shows
a slight drop in performance when the number of nights to attend increases,
while Rg shows a much more pronounced drop. Furthermore, in agreement
with our previous results?°, despite being factored, the poor signal-to-noise in
R results in poor performance with it for all problems. (Temperatures varied
between .01 and .02 for the three W L rewards, and between .1 and .2 for the G
reward, which provided the respective best performances for each.) These re-
sults confirm our theoretical prediction of what private utility converges fastest
to the world utility maximum.

5 Conclusion

In this article we considered how to design large multi-agent systems to meet
a pre-specified goal when each agent in the system uses reinforcement learning
to choose its actions. We cast this problem as how to initialize/update the
individual agents’ private utility functions so that their collective behavior
optimizes a pre-specified world utility function. The mathematics of COINs is
specifically concerned with this problem. In previous experiments we showed
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Figure 3: Behavior of different reward function with respect to number of nights to attend.
(WL is & ; WL is + ; WLl is O ; G is x)

that systems based on that math far outperformed conventional “team game”
systems, in which each agent has the world utility as its private utility function.
Moreover, the gain in performance grows with the size of the system, typically
reaching orders of magnitude for systems that consist of hundred of agents.

In those previous experiments the COIN-based private utilities had a free
parameter, which we arbitrarily set to 0. However as synopsized in this paper,
it turns out that a series of approximations in the allows one to derive an op-
timal value for that parameter. Here we have repeated some of our previous
computer experiments, only using this new value for the parameter. These
experiments confirm that with this new value the system converges to signifi-
cantly superior world utility values, with less sensitivity to the parameters of
the agents’ RL algorithms. This makes even stronger the arguments for using
a COIN-based system rather than a team-game system. Future work involves
improving the approximations needed to calculate the optimal private utility
parameter value. In particular, given that that value varies in time, we intend
to investigate having it be calculated in an on-line manner.
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